説明ページへ戻る 算数の学力診断テスト解答 問題へ戻る
 実は分数計算の問題を出したいのだけど、表記面での技術上できないのでやむなく省きます。
 【問題】 <制限時間:20分>
 1と2は計算せよ、3はxの値を求めよ。また4から10は各質問通り答えよ。

1. 30−15÷5+3
=30−3+3
=27+3
=30

2. 276×275+274×275−550×274
=275×276+275×274−275×2×274
=275×276+275×274−275×548
=275×(276+274−548)
=275×(550−548)
=275×2
=550

or
 276×275+274×275−550×274
=275×(276+274)−550×274
=275×550−550×274
=550×(275−274)
=550×1
=550

3. 0.8:x=2:3

 x×2=0.8×3
 x×2=2.4
 x=2.4÷2
  =1.2                     A. 1.2

4.四角形の4つの角の大きさの比が、2:3:4:6であるとき、一番大きな角は
 何度になるか。

 四角形の内角の和は、360度 2+3+4+6=15
 360×6/15(15分の6)=144           A. 144度

5. 時速12qの自転車で24分走ると、何m進みますか。

 24分=24/60時間=2/5時間  12(q)×2/5時間=4・4/5(4と5分の4)(or4.8)
                              A. 4と5分の4(or4.8)q

6. 3%の食塩水500gと5%の食塩水300gを混ぜると、何%の食塩水ができま
 すか。

 (食塩の図が書けないので省く)←実はこれが大切で、また図をみて式が作れる。
 500×3/100+300×5/100=15+15=30 ←(食塩の量)
 500+300=800(食塩水)
 30/800×100=15/4
          =15÷4
          =3.75                 A.3.75%

7.ある投手は平均毎時144qの速さでボールを投げる。いまこの投手が18mはな
 れたところから投げるのに、何秒かかりますか。

 144q=144000m 1時間=3600秒←<暗記だね>
 144000(m)÷3600(秒)=40m毎秒 18÷40=0.45(秒)
                             A. 0.45秒

8.縮尺50000分の1の地図で8pは、実際の距離では何qになりますか。

 8(p)×50000=400000(p)
          =4000(m)
          =4(q)              A. 4q

9.男子の平均点は70点、女子の平均点は60点でした。このクラスの全体の平均
 点は何点になりますか。

 (70×30+60×20)÷(30+20)
=(2100+1200)÷50
=3300÷50
=66                             A. 66点

10.弟は家から学校へ分速80mで歩いて行きましたが、10分後、弟の忘れものに
 気づいた兄が、分速120mで弟を追いかけて家を出ました。弟が出発して何分
 後に、兄は弟に追いつきましたか。

 (線分図が描けないので省く。) 80×10=800(m) 弟は800m先を進んでいる。
 120-80=40(m) 兄は1分間に40m追いついてゆくことになるから、
 800÷40=20(分) つまり、20分後に兄は弟に追いつく。問題は、弟が出発して
 から何分後?だから、10+20=30   A. 30分後

 【解説と評価など】
 これはメルマガでも述べていますが、問題のレベルをいま3つに別け、ステップ1
を「学校で習っている基礎」、ステップ2を「応用をこなすための基礎」、ステップ3を
「さまざまな応用問題」とすると、ステップ2の「応用をこなすための基礎」の問題で
す。

 厳密にいえば、2は計算の応用、10は文章題の応用ともいえますが、その代わり
1番や5番のようにあきらかに基礎といえるものも含ませており、ステップ2の力とし
て全体でバランスをとっています。

 速さや濃度の問題、平均や比例配分などの問題は、中1数学になれば文字と式、
1次方程式ですぐに問われる定番的な知識ですが、すいすいスムーズにはたして
解けるでしょうか? 

 一応8問できれば合格といえますが、算数の力はそこそこ持っていると自信のあ
る生徒ならば、9問、いや全問できてもおかしくないし、なんだこの程度か、これくら
いの程度ならじゅうぶんできるよ、と思ってほしいものです。

 ところが、そうじゃない生徒(7問以下)は、もっと算数の時点で力を強化する勉強
を積んでおくことが望まれでしょう。また、たとえ8,9問できた生徒でも、まだステップ
2の段階でもまだもうすこし鍛えて力を蓄えておく勉強が、算数にあるかと思います。